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Counting multiple solutions in glassy random matrix models

N. Deo
Poornaprajna Institute for Scientific Research, Bangalore 560080, India

and Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
~Received 21 January 2003; published 28 August 2003!

This is a first step in counting the number of multiple solutions in certain glassy random matrix models
introduced by N. Deo@Phys. Rev. E65, 056115~2002!#. We are able to do this by reducing the problem of
counting the multiple solutions to that of a moment problem. More precisely, we count the number of different
moments when we introduce an asymmetry~tapping! in the random matrix model and then take it to vanish.
It is shown here that the number of moments grows exponentially with respect toN, the size of the matrix. As
these models map onto models of structural glasses in the high temperature phase~liquid!, this may have
interesting implications for the supercooled liquid phase in these spin glass models. Further, it is shown that the
nature of the asymmetry~tapping! is crucial in finding the multiple solutions. This also clarifies some of the
puzzles raised by E. Bre´zin and N. Deo@Phys. Rev. E59, 3901~1999!#.

DOI: 10.1103/PhysRevE.68.026130 PACS number~s!: 02.70.Ns, 61.20.Lc, 61.43.Fs
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I. INTRODUCTION

Random matrix models can be used very effectively
simple mathematical toy models, where many new idea
physics, biology, and economics can be tested analytic
Ref. @1–3#. Here, we try to understand the idea of tappi
and counting, well studied in the context of granular med
in the glassy random matrix model introduced in Ref.@4#.
There, it was demonstrated that the matrix models with g
in their eigenvalue distribution had multiple solutions a
were related to the high temperature phase of certainp-spin
glass models, Ref.@5#. We approach the problem in much th
same spirit as done for spin systems in Ref.@6#. This is a first
step in understanding what happens when we tap the mo
i.e., introduce a perturbation and remove it. This enables
to count the number of different configurations. Studies
understand the fluctuation-dissipation relations and the r
tions between the dynamical and Edwards temperature in
dynamical matrix models await further work. This study w
also help us understand some of the puzzles that we rais
Ref. @7#. One of the puzzles in these models is that the lo
range correlators found in Ref.@8# by the mean field calcu
lations differ from that found in Ref.@9,7# using the orthogo-
nal polynomial methods. A resolution of this has been s
gested in Ref.@10# where it is claimed that the differenc
arises due to the discreteness of the number of eigenva
for double-well models with equal depths. Here, we try
understand these results using the method of moments.

Most of the studies and applications of matrix mod
correspond to eigenvalue distributions on a single cut in
complex plane where the eigenvalue density is nonzero,
@1#. Here, we study a one-Hermitian matrix model with
more complicated eigenvalue structure. These have fo
applications in two-dimensional quantum gravity, stri
theory, disordered condensed matter systems, supercon
ors ~with complex vector potential and with impurities!, and
glasses. Here, we study these models with application
glasses in mind, as discussed in Ref.@4#. To illustrate some
of the generic properties, we study a one-Hermitian ma
model with two cuts for the eigenvalue density. One of t
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important differences observed in these models is that th
have multiple solutions, which show up in certain correlati
functions. Here, we count the number of multiple solutio
and explore the possibility that these multiple solutions ar
by taking different paths in phase space~each path may cor-
respond to a different metastable glassy state!. It is important
to establish the correspondence between the multiple s
tions and the metastable glassy states. The barrier he
corresponding to these various solutions are also fu
goals.

I will discuss here the matrix model with double-well po
tential, theM4 model ~the Gaussian Penner model whe
similar things happen will be pursued elsewhere!. A tapping
is introduced, which corresponds to coupling the mat
model to an external source. The limit of taking the exter
sources to vanish gives different values for the moments
these models. This may result in different values for the p
tition function and, hence, the free energy. Taking differe
tappings corresponds to exploring the full space of confi
rations. Here, we present the first steps in counting the n
ber of different configurations and find it to be exponentia
large.

After this work was completed, we find that in a differe
context the results of exponentially large number of minim
have been reported in a renormalizable matrix potential w
SN using a different method given by Soljacic and Wilcze
Ref. @11#.

II. NOTATIONS AND CONVENTIONS

Let M be a Hermitian matrix. The partition function to b
considered is Z5*dMe2NtrV(M ), where M5N3N,
a Hermitian matrix. The Haar measuredM
5) i 51

N dMii ) i , jdMi j
(1)dMi j

(2) with Mi j 5Mi j
(1)1 iM i j

(2) and
N2 independent variables.V(M ) is a polynomial in M:
V(M )5g1M1(g2/2)M21(g3/3)M31(g4/4)M41•••. The
partition function is invariant under the change of variab
M 85UMU†, whereU is a unitary matrix. We can use thi
invariance and go to the diagonal basis, i.e.,D85UMU†

such thatD8 is the matrix diagonal toM with eigenvalues
©2003 The American Physical Society30-1
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l1 ,l2 , . . . ,lN . Then, the partition function becomesZ

5C*2`
` ) i 51

N dl iD(l)2e2N( i 51
N V(l i ), where D(l)5) i , j ul i

2l j u is the Vandermonde determinant. The integrat
over the groupU with the appropriate measure is trivia
and is just the constantC. By exponentiating the deter
minant as a ‘‘trace log,’’ we arrive at the Dyson ga
or Coulomb gas picture. The partition function is simplyZ
5C*2`

` ) i 51
N dl ie

2S(l) with S(l)5N( i 51
N V(l i)

22( i , j ,iÞ j lnuli2lju.
This is just a system ofN particles with coordinatesl i on

the real line, confined by a potential and repelling each ot
with a logarithmic repulsion. The spectrum or the density
eigenvaluesr(x)5(1/N)( i 51

N d(x2l i) is in the large N
limit or doing the saddle point analysis just the Wigner sem
circle for a quadratic potential. The physical picture is th
the eigenvalues try to be at the bottom of the well. Bu
costs energy to sit on top of each other because of loga
mic repulsion, so they spread.r has a support on a finite lin
segment. This continues to be true whether the potentia
quadratic or a more general polynomial, and only depend
there being a single well though the shape of the Wig
semicircle is correspondingly modified. For the quadratic

FIG. 1. ~a! The confining potential.~b! The density of eigenval-
ues.
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tential, the density isr(x)5(1/p)A(x2a)(b2x) where
@a,b# are the ends of the cuts. See Figs. 1.

On changing the potential more drastically by having tw
humps or wells, the simplest example being a poten
V(M )52(m/2)M21(g/4)M4, the density can get discon
nected support. The precise expressions for the densit
eigenvalues are as follows:

r~x!5
g

p
xA~x22a2!~b22x2!, a,x,b

50, 2b,x,2a, ~2.1!

where a25(1/g)@ umu22Ag# and b25(1/g)@ umu12Ag#
with umu.2Ag, which is the condition that the wells ar
sufficiently deep. The eigenvalues sit in the symmetric ba
centered around each well. Thus,r has support on two line
segments. Asumu approaches 2Ag, a→0 and the two bands
merge at the origin. Then the density is

r~x!5
gx2

p
Ax22

2m

g
, 2A2umu

g
,x,A2umu

g
,

50, otherwise. ~2.2!

The phase diagram and density of eigenvalues for theM4

potential are shown in Fig. 2.
The simplest way to determiner(z) explicitly is to use

the generating functionF(z)5^1/N Tr 1/(z2M )& and its
saddle point or Schwinger-Dyson equation also known in
mathematics literature as the Riemann-Hilbert probl
F(z)5 1

2 @V8(z)1AD(z)# with D(z)5V8(z)224b(z) and
b(z)5gz21m1g^1/N Tr M2& ~see Ref.@12#!. The density
r(x) is then determined by the formular(z)
52(1/2p)ImAD(z). In what follows, the matrix model is
tapped~that is, a small perturbation is added, which brea
FIG. 2. ~a! The double-well potential.~b!
Density of eigenvalues.~c! The phase diagram.
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COUNTING MULTIPLE SOLUTIONS IN GLASSY . . . PHYSICAL REVIEW E68, 026130 ~2003!
theZ2 symmetry! and the number of solutions correspondi
to the different moments of the model is counted.

III. INTRODUCING ASYMMETRY „TAPPING …

Let us put a matrix sourceA, with an eigenvaluean ,
which will ultimately vanish in the partition function

ZN~A!5E dMe2N Tr„V(M )2AM…. ~3.1!

Using Harish-Chandra-Itzykson-Zuber formula

ZN~A!5E )
1

N

dl i

D~l!

D~a!
e2(

1

N

[V(l i )2ail i ] , ~3.2!

where

D~l!5Detl i
j 21 . ~3.3!

Then, in terms of the moments, the partition function b
comes

ZN~A!5
Det„mn~ak!…

D~a!
~3.4!

with

mn~a!5E dxe2N[V(x)2ax]xn. ~3.5!

Let us considermn(a) if N goes to infinity beforea→0.
~a! First take a non-Z2 symmetricV(x) with two wells,

see Fig. 3.
~i! The saddle point is the solution ofV8(x)5a, see Fig.

4.
~ii ! If a is positive, we have three solutions but the acti

is lowest atx3.
~iii ! x3 is still the leading saddle-point solution fora

,0.

FIG. 3. The asymmetric potentialṼ(x).
02613
-

Therefore, the behavior ofmn(a) for small a is indepen-
dent of the sign ofa. This corresponds to the case studied
Ref. @8#, where the difference between the depths of
asymmetric wells is large.

~b! However, if V is symmetric, for example,V(x)
521/2x21g/4x4, whena→0 the saddle points are

xc56
1

Ag
1

a

2
1O~a2!, ~3.6!

(x'0 has a higher action! then

S~xc!5
1

2g
7

a

Ag
. ~3.7!

The integralmn is dominated by

x51
1

Ag
1

a

2
for a.0,

52
1

Ag
1

a

2
for a,0. ~3.8!

The moments are thus given by

mn5
1

gn/2e2N/2ge1aN/AgA2p

3N
for a.0,

5S 21

Ag
D n

e2N/2ge2aN/AgA2p

3N
for a,0. ~3.9!

For n even, the two results are the same; but forn odd, we
get opposite signs. Note that theZ2 symmetry would say tha
mn50 for n odd anda→0. The set of moments would b
2N/2 corresponding to the number of different possible m
ments~only the odd moments are different for differentn).

~c! We have to check whether the nonuniformity of th
limits N→`, a→0 may be present ifV is nonsymmetric but
has two wells of equal depths.

FIG. 4. Derivative of the asymmetric potentialṼ8(x).
0-3
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The same series of arguments follows through for
asymmetric potential with two wells of equal depths as
the purely symmetric potential. Hence, there would be m
tiple solutions of the same multiplicity 2N/2 in the moments
for this problem as well. This is the same situation cons
ered in Ref.@10# ~though here only one of the 2N/2, the
symmetric solution, as is referred to in Ref.@12# was consid-
ered! and we arrive at the same symmetric answer as in R
@10# where they make the unequal wells equal~asymmetry
tending to zero limit! ~Fig. 5!.

IV. FIRST STEPS IN COUNTING MULTIPLE SOLUTIONS

Let us reformulate the problem in a slightly different wa
to enable counting and bring out some different results i

FIG. 5. The asymmetric potentialV(x) with two wells of equal
depths.
h

fo
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form easily comparable to formulas in Ref.@13#. We consider
the measure

Z21exp~2N tr V~M !1N tr MA!dN2
M , ~4.1!

where V is an arbitrary polynomial and A
5diag(a0 , . . . ,aN21) can be assumed diagonal.

One diagonalizes M; if M5VLV† where L
5diag(l0 , . . . ,lN21), the integral overV is the usual
Itzykson-Zuber integral on the unitary group and one find

rN~l0 ,l1 , . . . ,lN21!5Z21D~l i !
det~expNl jal !

D~al !

3expS 2N (
i 50

N21

V~l i !D . ~4.2!

Replacing powers ofl in the Van der Monde with
the orthogonal polynomials Pk(l) of the measure
exp@2NV(l)#dl. The partition functionZ can then be ex-
pressed as

Z5
N!

D~al !
E )

i 50

N21

dl idet@Pk~l i !#expN (
i 50

N21

@2V~l i !1ail i #

5
N!

D~al !
detS E dlPk~l!expN@2V~l!1all# D . ~4.3!

Hence,rN becomes
rN~l0 ,l1 , . . . ,lN21!5
1

N!

det„Pk~l i !…i ,k50, . . . ,N21det~expNall j ! j ,l 50, . . . ,N21

detS E dlPk~l!expN@2V~l!1all# D
k,l 50, . . . ,N21

expS 2N (
i 50

N21

V~l i !D . ~4.4!
This formula has a simple structure. On introducing t
functions Fk(l)5hk

(21/2)Pk(l)exp@2N/2V(l)# and Gl(l)
5exp(Nall2N/2V(l)), we have

rN~l0 ,l1 , . . . ,lN21!

5
1

N!

det„Fk~l i !…i ,k50, . . . ,N21det„Gl~l j !…j ,l 50 . . .N21

detS E dlFk~l!Gl~l! D
k,l 50, . . . ,N21

.

~4.5!

The matrix @*dlGl(l)Fk(l)# l ,k50, . . . ,N21 has an inverse
akl . Putting the three determinants together, we get the
lowing:
e

l-

rN~l0 ,l1 , . . . ,lN21!5
1

N!
det„K~l i ,l j !…i , j 50, . . . ,N21 ,

~4.6!

where

K~l,m!5 (
k,l 50

N21

Fk~l!aklGl~m!. ~4.7!

The kernel satisfies the following property:

@K* K#~l,r!5K~l,r! ~4.8!

(@K* K#(l,p)5*dmK(l,m)K(m,p)). Thus, we obtain the
determinant formulas
0-4
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rn~l0 ,l1 , . . . ,ln21!5
~N2n!!

N!
det„K~l i ,l j !…i , j 50, . . . ,n21

~4.9!

for any n<N. The kernelK has the form

K~l,m!5 (
k50

N21

Fk~l!F̂k~m! ~4.10!

with F̂k(m)5( laklGl(m), but F̂kÞFk . Thus,K is not sym-
metric. In order to get further properties forK, we consider
the integral

I 5E dl@Gl~l!Fk~l!# l ,k50, . . . ,N21

5E dl
Pk~l!

Ahk

exp„N@2V~l!1all#…

5
1

Ahk
E dl(

i 50

k

Cil
iexp„N@2V~l!1all#…

5
1

Ahk
(
i 50

k

CiE dll iexp„N@2V~l!1all#…

5
1

Ahk
(
i 50

k

Cimi , ~4.11!

mi are the moments. For symmetric potentialV(l), the
above expression becomes~using the expression for the mo
ments found in the preceding section!

I 5E dl@Gl~l!Fk~l!# l ,k50, . . . ,N21

5
1

Ahk
(
i 50

k

Cig
i /2e2N/2g1alN/AgA2p

3N
5akl

21 for al.0

5
1

Ahk
(
i 50

k

CiS 2
1

Ag
D i

e2N/2g2alN/AgA2p

3N
5akl8

21

for al,0. ~4.12!

Summarizing

I 5H akl
21 , al.0,

akl8
21 , al,0.

Recall that xc561/Ag1a/2, thus only for 61/Ag
>a/2 the above result holds, i.e., the integral equation~4.12!
has two values depending on whetheral.0 or al,0.
Whereas for61/Ag<a/2, the usual single-well result, a
given in Ref.@13#, is found.

From the equation forK(l,m), i.e., Eq.~4.10! which de-
pends on the integral equation~4.12! through a sum, it may
be possible that there are 2N solutions for certain kernels
this would correspond to an exponentially large number
solutions depending on the path or different combinations
02613
f
f

al taken. ForrN(l0 , . . . ,lN21) and Z, i.e., Eqs.~4.3! and
~4.4! which are related toI through a determinant, it is risky
to consider the largeN behavior of I before computing
det[N3N] I . Counting at the level of K(l,m),
rN(l0 , . . . ,lN21), Z, and the free energy still remains a
open problem and needs a nonperturbative treatment~as
shown in Ref.@12#!. This will be pursued in a future work.

V. AN EXPLICIT CALCULATION OF THE INTEGRAL
EQUATION „4.12… FOR THE DOUBLE-WELL PROBLEM

For the double-well matrix model the orthogonal polyn
mials, are not known polynomials but we do know the for
for the polynomial at largeN, i.e., when (N2n)'O(1). The
polynomials are given by

cn~l!5
1

Af
Fcos„Nz2~N2n!f1x1~21!nh…~l!

1OS 1

ND G , ~5.1!

wheref , z, f, x, andh are functions ofl and are given by

f ~l!5
p

2l

~b22a2!

2
sin 2f~l!,

z8~l!52pr~l!,

cos 2f~l!5

l22
~a21b2!

2

~b22a2!

2

,

cos 2h~l!5b
cosf~l!

l
,

sin 2h~l!5a
sinf~l!

l
,

x~l!5
1

2
f~l!2

p

4
. ~5.2!

Let us consider the Eq.~4.12! with the above asymptotic
ansatz forfk for largek, then

I 5E Pk~l!e2N[V(l)2ãl] ,

Pk~l!e2~N/2!V(l)5Ahkck~l!,
0-5
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I 5AhkReE dl

Af ~l!
ei [Nz2(N2k)f1x1(21)kh]e2N[1/2~21/2ml21g/4l4!2ãl]

5AhkReE dlexpS NF 1

2N
ln f ~l!1 i z1 igN,k

f

N
1 i ~21!k

h

N
1

1

4
ml22g/8l41ãl2

p

4NG D , ~5.3!
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where gN,k is given by 2(N2k)1 1
2 . In the saddle point

approximation, the exponentS(l) is to be minimized. The
action

S~l!5
igN,kf~l!

N
1 i z1 i ~21!k

h~l!

N
1

1

4
ml22g/8l4

1ãl1
1

2N
ln f ~l! ~5.4!

will have a first derivative which vanishes as shown belo

igN,kf8~l!

N
1 i z81 i ~21!k

h8~l!

N
1

1

2
ml2g/2l31ã

1
1

2N f~l!
f 8~l!5S8~l!50,

igN,kf8~l!

N
2 ipr~l!1 i ~21!k

h8~l!

N
1

1

2
ml2g/2l31ã

1
1

2N f~l!
f 8~l!50, ~5.5!

where we have used the relation forz in terms ofr from Eq.
~4.14!. Solving for the densityr(l), we get

r~l!5
i

p S 2
1

2
ml1g/2l32ãD1

gN,kf8~l!

pN

2
i

2Np f ~l!
f 8~l!1~21!k

h8~l!

pN
. ~5.6!

For the symmetric potential using the expression forr(l)
and in the largeN limit neglecting the last terms, for smalla
the equation forl has solutionslpm and 0. Thus, in the
saddle point approximation, the integralI for large k be-
comes

I 65I 0Pk~l6!e2N(V(l6)2al6)1h.o.t. ~5.7!

~the l;0 solution gives a higher action!, whereI 0 is a con-
stant. Hence, we have shown in an explicit example for
symmetric double-well potential that the integral equat
~4.12! for a largek in the saddle point approximation has tw
solutions, which solution is chosen depends on whethea
> or <0. This result indicates the possibility that the kern
partition function, free energy can have 2N solutions depend-
02613
:

e

,

ing on the path$al% taken as these functions all depend
the integralI, Eq. ~4.12!. Thus, here evidence is present
that there exists an exponentially large number of solutio
i.e.,eN ln 2, in the double-well matrix models depending upo
the path taken in parameter space$al%. It will be interesting
to explore the possibility that these exponentially large nu
ber of solutions correspond to the metastable solutions of
supercooledp-spin glass that these random matrix mod
map into.

VI. CONCLUSIONS

We have been able to map the problem of counting
number of multiple solutions found in Ref.@12# to a moment
problem. The multiple solutions were discovered in the
currence coefficients of the orthogonal polynomials in R
@12#. It was known that there are an infinite number of so
tions. The counting problem is mapped onto counting
number of ways to get different moments. The set of m
ments grows exponentially as 2N/2. In order to show this, we
have to introduce a small perturbation that breaksZ2 sym-
metry into the moment integral and then take the sm
asymmetry parameter to zero~which we call tapping the ma
trix!. As an added bonus, we are able to understand som
the puzzles and controversies that are found in Ref.@12# and
studied in Refs.@9,7#. The counting at the level of the kerne
rN(l0 , . . . ,lN21), Z, and the free energy still remains a
open problem and needs a nonperturbative treatment.
will be pursued in a future work.

The number of moments in these random matrix mod
are exponentially rising withN. These matrix models are
connected with the high temperature phase of structu
glasses as has been discussed in Refs.@4,5#. There could be
interesting properties of the supercooled liquid phase, wh
may be explored analytically in these simple models. F
example, it will be worthwhile to study how the metastab
states of the liquid are related to the different paths of tak
the small perturbation parameter, as introduced here, to z
Future work on finding barrier heights is underway.
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